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Abstract

In this paper\ a 1!D elastic!plastic BEM formulation predicting the reduced mode II and the enhanced
mode I stress intensity factors are presented[ The dilatant boundary conditions "DBC# are assumed to be
idealized uniform sawtooth crack surfaces and an e}ective Coulomb sliding law[ Three types of crack face
boundary conditions\ i[e[ "0# BEM sawtooth model!elastic center crack tip^ "1# BEM sawtooth model!plastic
center crack tip^ and "2# BEM sawtooth model!edge crack with asperity wear are presented[ The model is
developed to attempt to describe experimentally observed non!monotonic\ non!linear dependence of shear
crack behavior on applied shear stress\ superimposed tensile stress\ and crack length[ The asperity sliding is
governed by Coulomb|s law of friction applied on the inclined asperity surface which has coe.cient of
friction m[ The traction and displacement Green|s functions which derive from Navier|s equations are
obtained as well as the governing boundary integral equations for an in_nite elastic medium[ Accuracy test
is performed by comparison stress intensity factors of the BEM model with analytical solutions of the elastic
center crack tip[ The numerical results show the potential application of the BEM model to investigate the
e}ect of mixed mode loading problems with various boundary conditions and physical interactions[ Þ 0888
Elsevier Science Ltd[ All rights reserved[

0[ Introduction

The general picture of the e}ects of fracture surface interference on shear mode "mode II and
mode III# of crack growth is one of interlocking asperities that both resist shear displacements are
forced to ride up on one another[ Thus\ the driving force for shear crack growth extension is
decreased by asperity shielding and induced mode I opening may be su.cient to cause crack
extension in a macroscopically shear mode of crack growth[ Boundary element methods is used to
model the complex resistance to the applied _eld to de_ne an e}ective driving force for crack
growth[ The fracture surface is described in the model using such parameters as asperity height\
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interaction distance\ slope\ and several empirical asperity wear criteria[ The model is developed to
describe the observed non!monotonic\ non!linear dependence of shear crack growth on applied
shear stress\ superimposed tensile stress\ and cyclic load history[

1[ BEM sawtooth model!elastic center crack tip

The physical asperity interaction model is described schematically in Fig[ 0\ which illustrates a
representative segment of displaced crack surfaces[ The equation

ta � msa "0#

states that asperity sliding is governed by Coulomb|s law of friction\ with coe.cient of friction m[
In order to implement this in the BEM formulation without modeling the actual sawtooth surface
a macroscopic crack plane is taken parallel to the midplane of the perfectly meshed sawtooth
surface and standard stress transformation\ i[e[

sc � sa cos"a#−ta sin"a#\ "1#

tc � ta cos"a#¦sa sin"a# "2#

performed to obtain an e}ective Coulomb sliding law on that plane[ This yields the equation

Fig[ 0[ Two dimensional geometry of idealized sawtooth contact with asperity angle a\ crack opening displacement `\
crack sliding displacement h\ coe.cient of friction m and e}ective coe.cient of friction G[
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tc � Gsc "3#

where G\ the e}ective coe.cient of friction\ is de_ned in as

G �
m¦tan"a#

0−m tan"a#
\ "4#

and a is the asperity angle[ The assumption of rigid body asperity sliding yields an induced opening
proportional to the sliding as expressed by ` � htan"a#\ where ` is the crack opening displacement\
COD\ and h is the crack sliding displacement\ CSD\ both referring to the macroscopic crack plane[
Since ` and h will vary along the length of the crack\ the asperities may only be considered to be
locally rigid in so far as they maintain planar surfaces[ However\ they must be considered deform!
able in bulk to accommodate the varying ` and h[

The _rst step in the BEM solution is to divide the cracked body into two bodies along the plane
of the crack\ referred to below as the interface[ The interaction between the two bodies is included
through boundary conditions relating the displacements and stresses on either side of the interface[
At points on the uncracked portion of the interface the 1 displacement components and the 1 stress
components must be continuous[ At points on the cracked portion of the interface the stresses are
continuous "1 conditions# and are related by eqn "3# "0 condition#\ and ` � htan"a# after ` and h
are expressed in terms of the displacements on opposite crack face[ Thus\ at each pair of points on
the interface we have four conditions involving eight quantities[ Four of those are eliminated
algebraically using the boundary conditions\ thus\ leaving four unknowns at each point[ Two
coupled boundary integral equations\ written as a function of position on the boundary of a body\
enforce all of the _eld equations of elasticity for that body[ The two equations for each of the two
arti_cially divided bodies are applied to each discretized point on the interface\ thus giving four
equations and four unknowns at each pair of interface points[ If the boundary of either of the
arti_cially divided bodies consists of other than the common interface\ then at each of these
boundary points there are four boundary quantities to be accounted for[ The only condition we
have used on these external boundaries has been prescribed stress\ thus leaving the two dis!
placements as unknowns\ with two equations provided by that body|s two boundary integral
equations[ The case of a crack lying on the interface between dissimilar materials is obtained from
the above formulation simply by making the elastic constants in two bodies di}erent[

The BEM consists of the discretization of the boundary surfaces and the numerical approxi!
mation of the boundary quantities in the set of equations obtained from the boundary integrals in
Young "0883# as described above[ We model the boundary\ using straight!line elements\ centered
about nodes at which the integral equations are applied in Young "0883#[ For straight boundary
this introduces no approximations[ We assume that the stress and displacement are constant
throughout each straight!line element[ This approximation allows their removal from the integral\
resulting in integrals of the known 1D Green|s function which have been evaluated in closed form
in Young "0883#[ The _nal result is a system of simultaneous linear algebraic equations for the
unknowns nodal displacements and stresses[ After the system is solved the crack tip stress intensity
factors "SIF|s# are calculated by _tting the calculated COD or CSD to the standard square root
form at an elastic crack tip[

The results shown here are for a _nite length crack "09 mm# either in an in_nite homogeneous
body with shear modulus G and Poisson|s ratio n[ The applied loading is uniform remote tensile
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Fig[ 1[ KII vs KIIapp for various values of asperity angle a "G � 79\999 MPa\ n � 9[2\ N � 29 MPa\ m � 9[1\ 1a � 09
mm#[

stress N and shear stress S[ The e}ective "applied minus resistance# mode II shear SIF and the
total "induced plus applied# mode I SIF for a homogeneous aluminum medium are denoted by KII

and KI in Figs 1 and 2[ They are plotted vs the applied shear SIF KIIapp\ which is calculated using
S in the open crack SIF solution[ KIapp is found in the same way using N[ Each curve in Figs 1 and
2 is for a single value asperity angle a and N � 29 MPa and m � 9[1 which gives G � 0[149[ Here
KII and KI refer to the actual or e}ective mode II and I SIF\ respectively[ Thinking of N as being
applied _rst and then S being increased from zero there is a range of applied shear for which the
crack surfaces are not in contact and the applied and actual KIIs are equal[ This range is denoted
by {OPEN| on a � 09> curves[ But\ when S is large enough to make KIIapp � KIIclosure � KIappcot"a#
the asperities come into contact\ and as S increases further the model goes into e}ect and shielding
occurs[ This portion is denoted by {CLOSED| on a � 09> curves[ The results of both {OPEN| and
{CLOSED| portions are linear[ In addition\ the ratio of the mode II e}ective SIF to the mode I
induced SIF is constant and equal to cot"a# in the {CLOSED| portion[ The value of KIIapp at which
the crack faces touch and shielding begins to decrease as a increases\ and can be identi_ed in Figs
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Fig[ 2[ KI vs KIIapp for various values of asperity angle a "G � 79\999 MPa\ n � 9[2\ N � 29 MPa\ m � 9[1\ 1a � 09 mm#[

1 and 2 as the intersection of the various lines with the KII � KIIapp line of unit slope and the
KI � KIapp � constant horizontal line\ respectively[ While the slopes of the KII lines decrease with
a everywhere\ the slopes of the KI lines increase with a from 9> to 34>\ reach a maximum and then
decrease all the way to KI � KIapp where a � 67[58>[ If a × 67[58> the e}ective coe.cient of friction
G is in_nite and the crack is locked[ Also the values KI � KIapp and KII � KIIclosure are locked in[

Figure 3 is an example of a parameter study with respect to the micro!mechanical variables[ KII

and KI are plotted vs asperity angle a for three di}erent values of coe.cient of friction m\ keeping
N and S _xed[ The plots cover the entire physical range of a[ Since m represents the coe.cient of
friction for a smooth faceted asperity surface\ zero to one is a fairly wide range for m as well[
Focusing on the m � 0[9 curves\ the crack is open if a ³ 02>\ closed if a × 02>[ The open:closed
transition depends on N and S only[ If a × 34> the e}ective coe.cient of friction G is in_nite and
the crack is locked[ The value of the locked KI is KIapp and the value of the locked KII depends on
the amount sliding which occurs before the contact occurs\ and happens to be equal to KIapp in
this case because the locking angle for m � 0[9 is 34>[ The m � 9[9 and 9[1 curves may be interpreted
similarly[ The results show that as a increases KI increases for a while\ as expected from the



L[!J[ Youn`\ Y[!P[ Tsai : International Journal of Solids and Structures 25 "0888# 2128Ð21412133

Fig[ 3[ Stress intensity factor vs asperity slope for various coe.cients of friction of m "G � 79\999 MPa\ n � 9[2\ N � 29
MPa\ S � 029 MPa\ 1a � 09 mm#[

imposed COD:CSD relationships[ However\ at some critical a the counteracting e}ect of greater
normal contact stress sc and greater G\ and hence greater frictional stress tc\ takes over and KI

begins to decrease with increasing a[

2[ BEM sawtooth model!plastic center crack tip

The formulation for small!scale plasticity at the crack tip is based on a re!formulation of the
Dugdale strip yielding model in Dugdale "0859# to the mixed mode open crack case\ in which the
normal and shear stresses in the plastic zone have the same ratio as the applied normal and shear
stresses\ but are both functions of the uni!axial tensile yield stress and the applied stresses in Becker
and Gross "0878#[ The case of the mixed mode Dugdale non!interfering crack problem is shown
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Fig[ 4[ Mixed mode Dugdale crack problem[

in Fig[ 4[ In the single mode case the stress is either the tensile yield stress or the shear yield stress[
The length of the mixed mode plastic zone is also given in terms of the same quantities\ just as in
the single mode open crack Dugdale case[ We adapt these ideas to our numerical formulation by
replacing the applied loading with e}ective SIFs and unknown plastic zone length in terms of the
unknown e}ective mode I and II SIFs[ We solve the non!linear problem directly for two e}ective
SIFs using Newton|s method subject to the conditions of zero slope in the COD and CSD at the
end of the plastic zone in Young "0883#[ For a given iteration on the e}ective KI and KII\ the
associated plastic zone stresses and plastic zone length are calculated from the modi_ed Dugdale
"0859# in terms of KI and KII[ These plastic zone stresses are used in prescribed stress boundary
conditions for the newly formulated plastic zone interface region in a revised BEM code and the
COD\ CSD and their slopes at the end of the plastic zone are calculated[ These are then put into
the 1D Newton|s method formulas for the next iterated values of KI and KII[ The iteration
is stopped when the di}erence between two subsequent guesses reaches some prescribed small
number[

In order to focus only on the DBC interaction all results in Figs 5\ 6 and 7 are for pure shear
loading\ N � 9 for a _nite length crack "09 mm#[ Figures 5 and 6 show the analogous results of
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Fig[ 5[ KII vs KIIapp for various values of asperity angle a "G � 79\999 MPa\ n � 9[2\ N � 9 MPa\ m � 9[1\ 1a � 09 mm\
sy � 299 MPa#[

elastic DBC boundary conditions "Figs 1 and 2# for plastic DBC boundary conditions[ The results
are for various values of asperity angle a at _xed coe.cient of friction\ m � 9[1[ They also show
that the KIIp vs KIIapp curves decrease monotonically in slope and magnitude as a increases in slope
and magnitude as KIIapp increases\ not present in the elastic case\ indicating that with plasticity at
the tip the e}ects of the roughness diminish with increased applied shear[ Experimental evidence
in the two papers by Tong "0884# can also support these observations[ The KIp vs KIIapp curves\ on
the other hand\ show that KIp reaches a maximum at some critical value of KIIapp\ which increases
monotonically with a\ and then decreases steadily from that maximum with increased applied
shear[ While out of the range of the plots shown\ the curves for a � 59> and greater do reach a
maximum at increasingly larger values of KIIapp[ The magnitude of the maximum value of KIp with
respect to KIIapp increases with a up to some critical value of a and then decreases with a until a
reaches the locking value[ This critical value of a increases with KIIapp and for the KIIapp range
shown varies between a � 39> and 59>[
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Fig[ 6[ KI vs KIIapp for various values of asperity angle a "G � 79\999 MPa\ n � 9[2\ N � 9 MPa\ m � 9[1\ 1a � 09 mm\
sy � 299 MPa#[

Also it is observed that\ at increasingly large values of KIIapp as a increases\ KIp will eventually
return to zero\ indicating zero plastic crack tip opening displacement[

Figure 7 is a plot of elastic\ plastic and critical KII and KI vs asperity angle a for m � 9[1[ The
applied shear S and normal stress N are 099 MPa and 19 MPa\ respectively\ and are held _xed[
The critical stress intensity factors\ Kce and Kcp are the mode I tensile Ks on the plane at the crack
tip for which the tensile stress is maximum[ This plane is never the original crack plane if both KI

and KII are non!zero[ In the maximum tensile stress mixed mode fracture propagation criterion
proposed by Erdogan and Shih "0852# it is Kc which controls the onset of crack growth and growth
occurs in the plane of maximum tensile stress[ In Fig[ 7 the critical angle between no contact or
contact is 02> and the critical angle for locking is 67[58>[ Both of them are the same as described
in the elastic case of Fig[ 3[ Also the elastic KIe is always larger than plastic KIp[ However the
plastic KIIp and Kcp are always larger than elastic KIIe and Kce[ It is worth mentioning that the
elastic Ks and the corresponding plastic Ks should overlap each other when there is no contact
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Fig[ 7[ Stress intensity factor vs asperity slope "G � 79\999 MPa\ n � 9[2\ N � 19 MPa\ S � 099 MPa\ m � 9[1\ 1a � 09
mm\ sy � 299 MPa#[

"a ³ 00[2>#\ but they are not[ This is due to numerical inaccuracy of the plastic case shown in
Table 0 "0[78)# and the inaccuracy in the adjustment of the elastic results mentioned above[

3[ BEM sawtooth model!edge crack with asperity wear

Wear can be de_ned as the surface damage caused by two surfaces moving past each other while
in contact "Fig[ 8#[ The asperities are assumed to begin to wear out when the macroscopic tangential
resistance stress reaches the shear yield stress\ as related by

tc � ty � ms\ "5#

and

ty �
sy

z2
\ "6#



L[!J[ Youn`\ Y[!P[ Tsai : International Journal of Solids and Structures 25 "0888# 2128Ð2141 2138

Table 0
Truncation length\ number of elements and accuracy of 09 mm elastic center crack in steel\
with G � 79\999 MPa\ N � 9 MPa\ S � 79 MPa\ and m � 9[1 "analytical KII � 09[92
MPazm#

Truncation Number of Calculated
length "mm# elements KI "zm# Error )

29 29 00[73 07[94)
009 009 00[10 00[65)
089 089 00[98 09[46)
029 "plastic# 029 09[11 0[78)

Fig[ 8[ Two dimensional geometry of idealized sawtooth wear with asperity angle a\ crack opening displacement `w\
coe.cient of friction m[

where sy and ty are yield stress in normal and shear direction\ respectively[ The asperity is proposed
to smear over and thereby cause a constant crack opening displacement `w "CODW# which is the
value of ` "COD# at that point right before wear[ The smear will be general\ be an irreversible
process consisting of either plastic deformation or fracture of asperities[ The crack tip SIFs for
elastic or plastic crack tip are calculated by the same methods as mentioned above for elastic and
plastic crack tip\ respectively[ It seems that the crack wears totally when all asperities reach the
shear yield stress\ ty\ simultaneously due to the uniformity of the applied load[

Figures 09 and 00 give the relations between KII\ KI and KIIapp with di}erent asperity angles for
edge crack problem "09 mm _nite length crack#[ As in the discussion of Figs 1 and 2 for a _nite
crack in the in_nite homogeneous body\ the slopes of the KII lines decrease with a everywhere\
while the slopes of the KI lines increase from 9 to 0\ reach a maximum and then decrease until
a � 67[58>[ Once wear occurs this dependence of KII on a is much less severe since the contact
surface is independent of a[ However\ since KI is _xed by the COD when wear occurs its post!wear
value is strongly in~uenced by a as shown[ They also show that as KIIapp increases both KII and KI

increase linearly[ After passing the yielding point KII jumps to a higher value and keeps increasing
linearly[ However\ KI remains the same because there are no more changes in the COD after the
asperities are worn ~at[
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Fig[ 09[ KII vs KIIapp for various values of asperity angle a "G � 79\999 MPa\ n � 9[2\ N � 9 MPa\ m � 9[1\ 1a � 09 mm\
sy � 299 MPa#[

4[ Conclusions

A 1D elastic!plastic BEM formulation predicting the reduced mode II and the enhanced mode
I stress intensity factors caused by fracture surface roughness has been presented[ Three types of
crack boundary conditions were investigated]

"0# DBC with elastic center crack tip[
"1# DBC with plastic center crack tip[
"2# DBC edge crack with asperity wear[

The dilatant boundary conditions "DBC# are based on the assumptions of idealized uniform
sawtooth crack surface and an e}ective Coulomb sliding law[ A simple yielding criterion for
occurrence of wear and subsequent sliding on the worn asperity surface has also been presented[
A re!formulation of the Dugdale plastic strip yield model has been used to analyze the results
obtained by a non!linear iterative solution of the plastic crack tip of a rough DBC crack[

The BEM o}ers important advantages over {domain| type solutions[ One of the most interesting
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Fig[ 00[ KI vs KIIapp for various values of asperity angle a "G � 79\999 MPa\ n � 9[2\ N � 9 MPa\ m � 9[1\ 1a � 09 mm\
sy � 299 MPa#[

features of the method is the much smaller system of equations and considerable reduction in the
data required to run a problem[ In addition\ since conditions at in_nity are incorporated in the
boundary integral directly\ the BEM is also well suited to problems solving with in_nite domains
such as the center crack problem in in_nite media for which the classical domain methods are
unsuitable[
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